ベータ分布の期待値・分散の導出

[記事公開日]2016/12/31[最終更新日]2017/06/28 [カテゴリー]ベータ分布 Written by  y0he1

確率密度関数\(f(x)=\frac{x^{{\alpha}-1} {(1-x)}^{{\beta}-1}}{B({\alpha},{\beta})}\)
期待値\(E(X)=\frac{\alpha}{{\alpha}+{\beta}}\)
分散\(V(X)=\frac{{\alpha}{\beta}}{{({\alpha}+{\beta})}^2({\alpha}+{\beta}+1)}\)

当ページは確率密度関数からのベータ分布の平均・分散の導出過程を記しています。

積率母関数の導出及び、積率母関数からの期待値・分散の導出は、積率母関数を用いたベータ分布の期待値・分散の導出をご覧ください。

※お使いの端末によっては、長い数式が右側にはみ出す場合がございます。縮小や右にスクロール、端末を横にするの動作などで解決する場合がございますので、お試しください。

ベータ関数の性質

\(Β(α,β)=\displaystyle \int_{ 0 }^{ 1 } t^{α-1} {(1-t)}^{β-1} dt\)

\(βΒ(α,Β)=(α+β)Β(α,β+1)\)

 
 

期待値の導出

\(\begin{eqnarray*}E(X)&=&\displaystyle \int_{ 0 }^{1}xf(x)dx\\ &=&\displaystyle \int_{ 0 }^{ 1 }x \frac{x^{{\alpha}-1} {(1-x)}^{{\beta}-1}}{B({\alpha},{\beta})}dx\\ &=&\displaystyle \int_{ 0 }^{ 1 } \frac{x^{{\alpha}} {(1-x)}^{{\beta}-1}}{B({\alpha},{\beta})}dx\\ \end{eqnarray*}\)

\(\alpha={\alpha}'-1\)と置換する。

\(\ \ \ \ \ \ \ \ \ \ \begin{eqnarray*}&=&\displaystyle \int_{ 0 }^{ 1 } \frac{x^{{\alpha}'-1} {(1-x)}^{{\beta}-1}}{B({{\alpha}'-1},{\beta})}dx\\ \end{eqnarray*}\)

info

\(βΒ(α,Β)=(α+β)Β(α,β+1)\)

上記のベータ関数の性質を使うと、

\(\begin{eqnarray*}B({{\alpha}'-1},{\beta})=\frac{{\alpha}'+\beta-1}{{\alpha}'-1}B({{\alpha}'},{\beta})\end{eqnarray*}\)

となる。

\(\ \ \ \ \ \ \ \ \ \ \begin{eqnarray*}&=&\frac{{\alpha}'-1}{{\alpha}'+\beta-1}\displaystyle \int_{ 0 }^{ 1 } \frac{x^{{\alpha}'-1} {(1-x)}^{{\beta}-1}}{B({{\alpha}'},{\beta})}dx\\ \end{eqnarray*}\)

info

\(\begin{eqnarray*}\frac{x^{{\alpha}'-1} {(1-x)}^{{\beta}-1}}{B({{\alpha}'},{\beta})}\end{eqnarray*}\)

これはパラメータが\({\alpha}',\beta\)のガンマ分布の確率密度関数である。そのため、

\(\displaystyle \int_{ 0 }^{ 1 } \frac{x^{{\alpha}'-1} {(1-x)}^{{\beta}-1}}{B({{\alpha}'},{\beta})}dx=1\)

は確率密度関数を確率変数がとりうる値において全て足しあわせた値であるため、1である。

また、

\({\alpha}'={\alpha}+1\)

に置換し直す。

\(\ \ \ \ \ \ \ \ \ \ \begin{eqnarray*}&=&\frac{\alpha}{\alpha+\beta} \end{eqnarray*}\)

分散の導出

\(\begin{eqnarray*}E(X^2)&=&\displaystyle \int_{ 0 }^{ 1 }x^{2}f(x)dx\\ &=&\displaystyle \int_{ 0 }^{ 1 }x^{2} \frac{x^{{\alpha}-1} {(1-x)}^{{\beta}-1}}{B({\alpha},{\beta})}dx\\ &=&\displaystyle \int_{ 0 }^{ 1 } \frac{x^{{\alpha}+1} {(1-x)}^{{\beta}-1}}{B({\alpha},{\beta})}dx\end{eqnarray*}\)

\(\alpha+1={\alpha}'-1\)と置換する。

\(\ \ \ \ \ \ \ \ \ \ \begin{eqnarray*}&=&\displaystyle \int_{ 0 }^{ 1 } \frac{x^{{\alpha}'-1} {(1-x)}^{{\beta}-1}}{B({{\alpha}'-2},{\beta})}dx\\ \end{eqnarray*}\)

info

\(βΒ(α,Β)=(α+β)Β(α,β+1)\)

上記のベータ関数の性質を使うと、

\(\begin{eqnarray*}B({{\alpha}'-2},{\beta})&=&\frac{{\alpha}'+\beta-2}{{\alpha}'-2}B({{\alpha}'-1},{\beta})\\ &=&\frac{{\alpha}'+\beta-2}{{\alpha}'-2}\frac{{\alpha}'+\beta-1}{{\alpha}'-1}B({{\alpha}'},{\beta})\end{eqnarray*}\)

となる。

\(\ \ \ \ \ \ \ \ \ \ \begin{eqnarray*}&=&\frac{{\alpha}'-2}{{\alpha}'+\beta-2}\frac{{\alpha}'-1}{{\alpha}'+\beta-1}\displaystyle \int_{ 0 }^{ 1 } \frac{x^{{\alpha}'-1} {(1-x)}^{{\beta}-1}}{B({{\alpha}'},{\beta})}dx\end{eqnarray*}\)

info

\(\begin{eqnarray*}\frac{x^{{\alpha}'-1} {(1-x)}^{{\beta}-1}}{B({{\alpha}'},{\beta})}\end{eqnarray*}\)

これはパラメータが\({\alpha}',\beta\)のガンマ分布の確率密度関数である。そのため、

\(\displaystyle \int_{ 0 }^{ 1 } \frac{x^{{\alpha}'-1} {(1-x)}^{{\beta}-1}}{B({{\alpha}'},{\beta})}dx=1\)

は確率密度関数を確率変数がとりうる値において全て足しあわせた値であるため、1である。

また、

\({\alpha}'={\alpha}+2\)

に置換し直す。

\(\ \ \ \ \ \ \ \ \ \ \begin{eqnarray*}&=&\frac{\alpha(\alpha+1)}{(\alpha+\beta)(\alpha+\beta+1)}\\\\ V(X)&=&E(X^2)-{(E(X))}^{2}\\ &=&\frac{\alpha(\alpha+1)}{(\alpha+\beta)(\alpha+\beta+1)}-{(\frac{\alpha}{\alpha+\beta})}^2\\ &=&\frac{\alpha\beta}{{(\alpha+\beta)}^{2}(\alpha+\beta+1)}\end{eqnarray*}\)

  • スポンサーリンク

  • コメントを残す

    メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

    CAPTCHA